Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules.

نویسندگان

  • Faouzi Horchani
  • Marianne Prévot
  • Alexandre Boscari
  • Edouard Evangelisti
  • Eliane Meilhoc
  • Claude Bruand
  • Philippe Raymond
  • Eric Boncompagni
  • Samira Aschi-Smiti
  • Alain Puppo
  • Renaud Brouquisse
چکیده

Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants

Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzyme...

متن کامل

Insights into symbiotic nitrogen fixation in Medicago truncatula.

In silico analysis of the Medicago truncatula gene index release 8.0 at The Institute for Genomic Research identified approximately 530 tentative consensus sequences (TC) clustered from 2,700 expressed sequence tags (EST) derived solely from Sinorhizobium meliloti-inoculated root and nodule tissues. A great majority (76%) of these TC were derived exclusively from nitrogen-fixing and senescent n...

متن کامل

Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula.

The legume-rhizobial symbiosis results in the formation of root nodules that provide an ecological niche for nitrogen-fixing bacteria. However, plant-bacteria genotypic interactions can lead to wide variation in nitrogen fixation efficiency, and it is not uncommon that a bacterial strain forms functional (Fix+) nodules on one plant genotype but nonfunctional (Fix-) nodules on another. Host gene...

متن کامل

Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium meliloti on Medicago truncatula.

During the course of the development of nitrogen-fixing root nodules induced by Sinorhizobium meliloti on the model plant Medicago truncatula, tubules called infection threads are cooperatively constructed to deliver the bacterial symbiont from the root surface to cells in the interior of the root and developing nodule. Three-dimensional reconstructions of infection threads inside M. truncatula...

متن کامل

Multiple steps control immunity during the intracellular accommodation of rhizobia

Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 2011